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Quantum and Classical Liouville Equation

The quantum Liouville equation:

i~
∂ρ̂

∂t
= [Ĥ, ρ̂]

The classical Liouville equation:

∂ρ

∂t
= {H, ρ}

where the Poisson bracket is

{H, ρ} =
∂H

∂q

∂ρ

∂p
− ∂ρ

∂q

∂H

∂p

These are connected by the Correspondence Principle:

[Ĥ, ρ̂]→ i~{Ĥ, ρ̂}+O(~3)
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The Wigner Function

A phase space representation of a quantum density operator ρ̂:

ρW (q, p, t) =
1

2π~

∞∫
−∞

< q − y
2 |ρ̂(t)|q + y

2 > e ipy/~ dy

For a pure state with wave function ψ(q, t) this becomes

ρW (q, p, t) =
1

2π~

∞∫
−∞

ψ∗(q + y
2 , t)ψ(q − y

2 , t)e ipy/~ dy

Craig C. Martens Quantum Trajectories in Phase Space



Introduction
Numerical Methodology

Applications
The Husimi Representation

Methodology, Revisited

Classical mechanics vs. quantum mechanics
Wigner representation
Entangled Trajectory Molecular Dynamics

Wigner Function Equation of Motion

The quantum Liouville equation again:

i~
∂ρ̂

∂t
= [Ĥ, ρ̂]

After some algebra, the Wigner transform the Liouville equation can be
written as

∂ρW

∂t
= − p

m

∂ρW

∂q
+

∞∫
−∞

J(q, p − ξ)ρW (q, ξ, t)dξ

where

J(q, η) =
i

2π~2

∞∫
−∞

[
V (q + y

2 )− V (q − y
2 )
]

e−iηy/~ dy
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Expression for the Kernel J(q, η)

The kernel can be evaluated to give

J(q, η) =
4

~2
Im
(

V̂ (2η/~)e−2iηq/~
)

The result for a Gaussian barrier:
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Wigner Function Equation of Motion

For a V (q) with a power series expansion J(q, p) becomes

J(q, p) = −V ′(q) δ′(p) +
~2

24
V ′′′(q) δ′′′(p) + · · ·

The Wigner function equation of motion is then

∂ρW

∂t
= − p

m

∂ρW

∂q
+ V ′(q)

∂ρW

∂p
− ~2

24
V ′′′(q)

∂3ρW

∂p3
+ · · ·

The nth term:

(−1)n~2n

22n(2n + 1)!

d2n+1V (q)

dq2n+1

∂2n+1ρW (q, p)

∂p2n+1
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Classical Liouville Equation

Classical Continuity in Phase Space

The classical Liouville equation

∂ρ

∂t
= {H, ρ}

is a continuity equation for incompressible flow in phase space:

∂ρ

∂t
+ ~∇ ·~j = 0
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The classical continuity equation:

∂ρ

∂t
= −~∇ ·~j = {H, ρ}

where

~∇ =

(
∂/∂q
∂/∂p

)
~j =

(
∂H/∂p
−∂H/∂q

)
ρ ∂q̇/∂q + ∂ṗ/∂p = 0

The current ~j is then the density times the phase space velocity field

~v =~j/ρ =

(
q̇
ṗ

)
=

(
∂H/∂p
−∂H/∂q

)
Recovering Hamiltion’s equations!
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Solving the Classical Liouville Equation Using Trajectories

Represent the continuous function ρ(q, p, t) in phase space by a discrete
sampling with N trajectories.

ρ(q, p, t) =
1

N

N∑
j=1

δ(q − qj(t))δ(p − pj(t))

where qj(t) and pj(t) is the phase space location of the j th trajectory at
time t.

Each member of the ensemble then evolves (independently) under
Hamilton’s equations.
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Quantum Liouville Equation in the Wigner Representation

The Wigner function obeys the phase space equation

∂ρW

∂t
= − p

m

∂ρW

∂q
+ V ′(q)

∂ρW

∂p
− ~2

24
V ′′′(q)

∂3ρW

∂p3
+ · · ·

Cast as a continuity equation (even though ρW can be negative!):

∂ρW

∂t
+ ~∇ ·~jW = 0

which defines a quantum current ~jW :

~∇ ·~jW =
∂

∂q

( p

m
ρW

)
+
∂

∂p

(
−V ′(q)ρW +

~2

24
V ′′′(q)

∂2ρW

∂p2
+ · · ·

)
Craig C. Martens Quantum Trajectories in Phase Space



Introduction
Numerical Methodology

Applications
The Husimi Representation

Methodology, Revisited

Classical mechanics vs. quantum mechanics
Wigner representation
Entangled Trajectory Molecular Dynamics

Quantum Trajectories

The quantum current then defines a vector field in phase space:

~v =~jW /ρW

These give a generalization of Hamilton’s equations:

q̇ = vq =
p

m

ṗ = vp = −V ′(q) +
~2

24
V ′′′(q)

1

ρW

∂2ρW

∂p2
+ · · ·

A ρW –dependent Bohmesque “quantum force”.
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Energy Conservation

The quantum trajectories do not conserve energy individually.

dH

dt
= q̇

∂H

∂q
+ ṗ

∂H

∂p
=

p

m

(
~2

24
V ′′′(q)

1

ρ

∂2ρ

∂p2
+ · · ·

)
Energy is conserved at the ensemble level.〈

dH

dt

〉
=

∫ ∫
ρ

dH

dt
dqdp =

∫ ∫
p

m

(
~2

24
V ′′′(q)

∂2ρ

∂p2
+ · · ·

)
dqdp = 0

This non-conservation of individual trajectory energy allows quantum
effects to be modeled.
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Entangled Trajectory Molecular Dynamics

For the j th trajectory:

ṗj = −V ′(qj) +
~2

24
V ′′′(qj)

1

ρW (q1, q2, . . . , pN)

∂2ρW (q1, q2, . . . , pN)

∂p2
+ · · ·

The equations of motion depend not only on the Hamiltonian H(q, p) at
each point in phase space, but on the entire state ρW . This, in turn,
depends on the entire ensemble.

The members of the ensemble are thus entangled with each other. The
statistical independence of ensemble members in classical mechanics is
thus lost for quantum trajectories!
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Trajectories in Phase Space

Classical and Quantum Trajectories

p

q

ρ(q,p,0)

ρ(q,p,t)

p

q
ρ(q,p,0)

ρ(q,p,t)

classical quantum

Classical trajectory ensembles evolve independently.  Quantum effects lead to 
an entanglement of the ensemble.  
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A Caveat

The Wigner function ρW (q, p, t) is real, but can become negative. Can its
evolution be represented by an ensemble of trajectories evolving under
these equations of motion?
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Numerical Methodology: Local Gaussian Ansatz

An approximate local Gaussian ansatz for the Wigner function.

ρ(q, p) = Ae−βq(q−qk )2−βp(p−pk )2+γ(q−qk )(p−pk )+αq(q−qk )+αp(p−pk )

around the point k.

Assumption: ρ is on average positive and smooth (formalize later).

The parameters αq, αp, βq, βp, and γ are determined locally for each
member of the ensemble from the moments of the whole ensemble. Then,

1

ρ

∂2ρ

∂p2
= α2

p − 2βp

1

ρ

∂4ρ

∂p4
= α4

p − 12α2
pβp + 12β2

p

etc.
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The Trick: Modified Moments

The generator of modified moments is

Ĩ =

∫ ∞
−∞

∫ ∞
−∞

e−βqξ2−βpη2+γξη+αqξ+αpη φhq ,hp (ξ, η) dξdη,

where this includes a local Gaussian window function φ:

φhq ,hp (ξ, η) = exp
(
−hqξ

2 − hpη
2
)

The modified mth, nth moment of ξ, η is then

˜〈ξmηn〉 ≡ 〈ξ
mηnφ〉
〈φ〉

=

∫ ∫
ξmηnφ(ξ, η)ρ(ξ, η)dξdη∫ ∫
φ(ξ, η)ρ(ξ, η)dξdη
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Modified Moments

For ρ a local Gaussian, these moments are generated by derivatives of Ĩ :

˜〈ξmηn〉 =
1

Ĩ

∂(m+n)

∂αm
q ∂α

n
p

Ĩ

Generalized variances and correlation:

σ̃2
ξ = ˜〈ξ2〉 − ˜〈ξ〉

2
σ̃2
η = ˜〈η2〉 − ˜〈η〉

2
σ̃2
ξη = ˜〈ξη〉 − ˜〈ξ〉 ˜〈η〉

The original Gaussian parameters can then be reconstructed:

αp =
σ̃ξ

2 ˜〈η〉 − σ̃ξη2 ˜〈ξ〉
σ̃ξ

2σ̃η
2 − σ̃ξη4

βp =
σ̃ξ

2

2(σ̃ξ
2σ̃η

2 − σ̃ξη4)
− hp

etc.
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Modified Moments from Ensemble

The required modified moments can be calculated easily from the evolving
ensemble:

˜〈ξmηn〉k =

∑N
j=1(qj − qk)m(pj − pk)nφ(qj − qk , pj − pk)∑N

j=1 φ(qj − qk , pj − pk)

This employs local data when determining the local Gaussian fit.

Distinct parts of the ensemble will be represented by different
Gaussian functions, in general.

The method is stable–no NaNs.

In practice, the local window function φ is taken to be a minimum
uncertainty Gaussian. An implicit Husimi representation (see below).
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Tunneling in Cubic Potential

Tunneling Through a Barrier

Tunneling in a Cubic Potential

q

p

-0.02
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0
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0.05
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V(q)

q

Craig C. Martens Quantum Trajectories in Phase Space



Introduction
Numerical Methodology

Applications
The Husimi Representation

Methodology, Revisited

Tunneling in Cubic Potential

ETMD for Cubic Potential

V (q) =
1

2
mω2

oq2 − 1

3
bq3

The quantum force on the j th member of the ensemble:

ṗj = −V ′(qj)−
~2b

12

∂2ρ/∂p2(qj , pj)

ρ(qj , pj)

ṗj = −V ′(qj)−
~2b

12
(α2

p,j − 2βp,j)

αp =
σ̃ξ

2 ˜〈η〉 − σ̃ξη2 ˜〈ξ〉
σ̃ξ

2σ̃η
2 − σ̃ξη4

βp =
σ̃ξ

2

2(σ̃ξ
2σ̃η

2 − σ̃ξη4)
− hp
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Tunneling in Cubic Potential

Classical Ensemble in Phase Space
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Tunneling in Cubic Potential

Entangled Ensemble in Phase Space
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Tunneling in Cubic Potential

Reaction Probability vs. Time: Classical and Entangled
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Tunneling in Cubic Potential

Tunneling Rate vs. Mean Energy
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Tunneling in Cubic Potential

Eckhart Barrier

The method also captures the quantum corrections to tunneling through
the Eckhart barrier.
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Husimi Distribution: Positive Phase Space Distribution

The Husimi Distribution

The Husimi distribution is a locally-smoothed Wigner function:

ρH(q, p) =
1

π~

∞∫
−∞

ρW (q′, p′)e
− (q−q′)2

2σ2
q e

− (p−p′)2

2σ2
p dq′dp′

where the smoothing is over a minimum uncertainty phase space Gaussian,

σqσp =
~
2
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Operator Formulation of Husimi Distribution

The smoothing can be represented using smoothing operators Q̂ and P̂

Q̂ = e
1
2
σ2

q
∂2

∂q2 P̂ = e
1
2
σ2

p
∂2

∂p2

The Husimi can then be written as a smoothed Wigner function as:

ρH(q, p) = Q̂P̂ρW (q, p)

This is related to the interesting identity:

e−a(x−x ′)2 = e
1
4a

∂2

∂x2 δ(x − x ′)
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Smoothing and Unsmoothing

We can consider the inverse unsmoothing operators Q̂−2 and P̂−1:

Q̂−1 = e
− 1

2
σ2

q
∂2

∂q2 P̂−1 = e
− 1

2
σ2

p
∂2

∂p2

so that the Wigner function can be written (at least formally) as an
“unsmoothed” Husimi:

ρW (q, p) = Q̂−1P̂−1ρH(q, p)

(Unsmoothing is risky in practice, of course!)
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Equation of Motion for the Husimi Distribution

We can then derive an equation of motion for the Husimi distribution.

∂ρH

∂t
= − 1

m
P̂pP̂−1∂ρH

∂q
+

∞∫
−∞

Q̂J(q, η)Q̂−1ρH(q, p + η, t) dξ

Note that there are no approximations; the Husimi representation provides
and exact description of quantum dynamics.

Powers of the coordinates and momenta become differential operators:

Q̂qQ̂−1 = q + σ2
q

∂

∂q
P̂pP̂−1 = p + σ2

p

∂

∂p

Q̂q2Q̂−1 = q2 + σ2
q + 2σ2

qq
∂

∂q
+ σ4

q

∂2

∂q2

etc.
Craig C. Martens Quantum Trajectories in Phase Space



Introduction
Numerical Methodology

Applications
The Husimi Representation

Methodology, Revisited

Equation of Motion for the Husimi Distribution

Wigner function equation of motion:

∂ρW

∂t
= − p

m

∂ρW

∂q
+ (mω2

oq − bq2)
∂ρW

∂p
+

~2b

12

∂3ρW

∂p3

Husimi equation of motion:

∂ρH

∂t
= − 1

m
P̂pP̂−1∂ρH

∂q
+ (mω2

oQ̂qQ̂−1 − bQ̂q2Q̂−1)
∂ρH

∂p
+

~2b

12

∂3ρH

∂p3

where

Q̂qQ̂−1 = q + σ2
q

∂

∂q
P̂pP̂−1 = p + σ2

p

∂

∂p

Q̂q2Q̂−1 = q2 + σ2
q + 2σ2

qq
∂

∂q
+ σ4

q

∂2

∂q2
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Continuity in the Husimi Representation

We again invoke continuity, now rigorous for a positive probability
distribution.

∂ρH

∂t
+ ~∇ ·~jH = 0

Then after a little algebra,

~∇ ·~jH =
∂

∂q

( p

m
ρH

)
+
∂

∂p

(
−V ′(q)ρH +

~b

2mωo
ρH +

~bq

mωo

∂ρH

∂q
+

~2b

4m2ω2
o

∂2ρH

∂q2
− ~2b

12

∂2ρH

∂p2

)
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Phase Space Vector Field in the Husimi Representation

The phase space vector field then becomes

q̇ =
p

m

ṗ = −V ′(q) +
~b

2mωo
+

~bq

mωo

1

ρH

∂ρH

∂q
+

~2b

4m2ω2
o

1

ρH

∂2ρH

∂q2
− ~2b

12

1

ρH

∂2ρH

∂p2

The quantum force now contains additional terms not present in the
Wigner representation quantum force. This is related to the fact that
classical propagation and smoothing do not commute.

These equations of motion can be propagated as before.

Craig C. Martens Quantum Trajectories in Phase Space



Introduction
Numerical Methodology

Applications
The Husimi Representation

Methodology, Revisited

Free Particle in the Husimi Representation

Because of the smoothing, the free particle motion is nonclassical!

∂ρH

∂t
= − 1

m
P̂pP̂−1∂ρH

∂q

or
∂ρH

∂t
= − 1

m
p
∂ρH

∂q
−
σ2

p

m

∂2ρH

∂q∂p

The extra terms due to noncommutativity of classical time evolution and
smoothing.
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Free Particle Propagation: Entangled vs. Exact
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FIG. 1: Contour lines of a free particle distribution function in the Husimi representation after

1000 atomic units of time. Dashed lines represent the analytical solution, solid lines represent a

numerical simulation using Entangled Trajectory Dynamics with 900 trajectories. Also depicted

is the time evolution of a single member of the ensemble of particles from t = 0 to t = 1000

propagated under (a) Wigner and (b) Husimi representations.

initially located at the origin. At later times it spreads out in a way that differs from the

classical (or Wigner) dynamics due to the last term in Eq. (12) containing mixed derivatives.

This term is not present in the Wigner representation, which coincides with the classical for

this case, and is not of quantum mechanical origin [4]. It effects the shape of the wavepacket

so the relation ρH = SqSpρ
W is maintained. Individual trajectories, thus, do not move in

straight lines of constant momentum, as they do classically, but adjust both momentum

and position to achieve a collective balance. Comparison with the analytical solution shows

quantitative agreement even after a relatively long simulation time. We have performed

simulations on the same system using fixed kernels as in Ref. [20], and local Gaussian

approximation as in refs. [9, 21]. While good results were obtained for short simulation

times, numerical instabilities dominate after roughly a third of the time shown in Fig. 1.

B. Tunneling

In this test, we simulate a quantum particle trapped in a cubic metastable potential well.

The potential function for this system is given by Eq. (14), with the constant B = 0.2981.

It has a local minimum at q = 0 and a potential barrier at q‡ = 0.6709 of height V ‡ = 0.015.

11
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Solving the Integrodifferential Equation Directly

Methodology, Revisited
The Wigner equation of motion:

∂ρW

∂t
= − p

m

∂ρW

∂q
+

∞∫
−∞

J(q, p − ξ)ρW (q, ξ, t)dξ

Write the divergence of the flux directly in this form:

~∇ ·~jW =
∂

∂q

( p

m
ρW

)
−
∞∫
−∞

J(q, ξ − p) ρW (q, ξ, t) dξ
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Solving the Integrodifferential Equation Directly

The momentum component:

∂

∂p
jW ,p = −

∞∫
−∞

J(q, ξ − p) ρW (q, ξ, t) dξ

or

jW ,p = −
∞∫
−∞

Θ(q, ξ − p) ρW (q, ξ, t) dξ

where

Θ(q, ξ − p) ≡
p∫

−∞
J(q, ξ − z) dz
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Solving the Integrodifferential Equation Directly

This can be written explicitly in terms of the potential V (q):

Θ(q, ξ − p) =
1

2π~

∞∫
−∞

[
V (q + y

2 )− V (q − y
2 )
] e−i(ξ−p)y/~

y
dy

Then the quantum trajectory equations of motion become

q̇ =
p

m

ṗ = − 1

ρW (q, p)

∫
Θ(q, p − ξ)ρW (q, ξ) dξ
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Numerical Approach

To proceed numerically, we write the Wigner function as a superposition of
Gaussians:

ρW (q, p, t) =
1

N

N∑
j=1

φ(q − qj(t), p − pj(t))

where

φ(q, p) =
1

2πσqσp
exp

(
− q2

2σ2
q

− p2

2σ2
p

)
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Numerical Approach

After some algebra, we find

ṗ(q, p) = −
∑N

j=1 φq(q − qj)Λ(q − qj , p − pj)∑N
j=1 φq(q − qj)φp(q − qj)

where

Λ(q−qj , p−pj) =

∫
V (q + z/2)− V (q − z/2)

z
exp

[
i
(p − pj)z

~
−
σ2

pz2

2~2

]
dz

This can be evaluated numerically for a given potential V (q).
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Reaction Probability vs. Time: Classical and Entangled

This method gives better long-time agreement for the cubic system:
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(Black=exact, red=old method, blue=new method.)
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Conclusions

It is possible to define quantum trajectories in a non-Bohmian phase
space context.

The phase space quantum trajectory formalism can give nearly
quantitative results for manifestly quantum mechanical processes such
as tunneling in model systems.

The methodology gives an appealing picture of quantum processes.
For instance, tunneling is accomplished by borrowing, not by
burrowing.
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Mortgage Crisis in Phase Space?
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